Wednesday, March 11, 2009

NXT Motor Grader: Part 2: Steering and wheel lean

Yesterday I started a new series of posts on creating a NXT motor Grader. In part 2 today I like to continue where I left off: designing the steering and wheel lean.
The wheel lean is an important feature of the motor grader that sets it apart from other construction vehicles:
Unlike some vehicle that uses wheel-lean to steer the vehicle (e.g. the Dodge Tomahawk), the wheel lean is used to aid the operator achieve a perfect grading finish: when the blade is at an angle, it helps keeping the grader pulling in a straight line. The top of the front wheels are normally leaned in the direction that material comes off the moldboard. You can find out more from this site [Thanks to John Brost for the link].

video:

[And please remember to press the new HQ button on the YouTube video to watch the video in high definition.]

The Design process:
My first attempt at creating the wheel lean used two PF motors and linear actuators and a single NXT servo motor in the middle for steering:
The PF motors were powered by a separate PF supply and contolled from the NXT by an IR-Link. An array of 4 IR receivers were placed infront of the IR-Link which commanded the motors based on the signal sent by the IR-Link for each of the four channels. The IR-Link and the remote receivers were then covered to stop the interfereence from sun light.

Two additional PF motors provided power to the two front wheels. With the new PF block for the IR-Lik, one can vary the power between left and right during steering - giving excellent control over the turning circle.
And although it looked elegant, I had got the pivot point wrong - so instead of leaning just the wheel it raised and lowered the vehicle instead! (see video above). I also made the wheels powered - just like the top of the range graders. However, the powered front wheels made accurate steering very hard.

My second attempt used some of the new components that shipped with some of the new 2009 TECHNIC models - namely the wheel braces. However, I removed the front wheel drive motors as it impacted the steering accuracy. And talking of accuracy - I replaced the PF motors + clutch with NXT servo motor (with built in rotation sensors) - so I have fine control over the lean of the two wheels:


The finished design worked beautifully achieving 45 degrees lean either way. The leaning had an impact on the turning circle - making it smaller (see video above):

BlueToothKiwi

No comments:

Post a Comment